Simulink® Compiler™
Getting Started Guide

<

MATLAB&SIMULINK

R2021a ¢ } MathWorkse

X B

How to Contact MathWorks

Latest news: www .mathworks. com

Sales and services: www.mathworks.com/sales_and_services
User community: www .mathworks.com/matlabcentral
Technical support: www . mathworks.com/support/contact_us
Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Simulink® Compiler™ Getting Started
© COPYRIGHT 2020-2021 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See

www .mathworks . com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.

Revision History

March 2020 Online only New for Version 1.0 (Release 2020a)
September 2020 Online only Revised for Version 1.1 (Release 2020b)
March 2021 Online only Revised for Version 1.2 (Release 2021a)

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Contents

Simulink Compiler Getting Started

1]

Simulink Compiler Workflow Overview 1-2
Toolboxes Supported by Simulink Compiler 1-5
Create and Deploy a Script with Simulink Compiler 1-7
Preparethe Model e 1-7
Write the ScripttoDeploy 1-7
Compile Script for Deployment, 1-8
Run the Deployed Script 1-8
Export Simulink Models to Functional Mock-up Units 1-9
Export Models 1-9
Export a Simulink Model 1-11

iii

Simulink Compiler Getting Started

* “Simulink Compiler Workflow Overview” on page 1-2

* “Toolboxes Supported by Simulink Compiler” on page 1-5

* “Create and Deploy a Script with Simulink Compiler” on page 1-7

* “Export Simulink Models to Functional Mock-up Units” on page 1-9

1 simulink Compiler Getting Started

Simulink Compiler Workflow Overview

1-2

Simulink Compiler lets you share simulations as standalone applications. Simulink Compiler extends
the capabilities of MATLAB® Compiler to allow Simulink sim command and associated Simulink
functions in the deployed script or application. For more information about MATLAB Compiler, see
MATLAB Compiler documentation.

The application users who use these deployed applications are not expected to interact with the
Simulink model directly. The Simulink user provides the application user with a tool that allows them
to explore task-specific scenarios without looking at the underlying model that represents the
dynamic system. The application users can change model parameters and simulation inputs, and
record and analyze simulation outputs.

Simulink Compiler Workflow Overview

Application Author Application User
Ensure that the Install MATLAB
model meets all the Runtime
requirements l

Use the standalone

Create an App deployed
Designer application application
or a MATLAB script

Configure the application for
deployment with
configureForDeployment
function

v

Create standalone
application using
Simulink Compiler

[Share the Application]

To develop an application, the Simulink user:

1 Prepares the Simulink model to be compatible with Simulink Compiler, such as checking that the
model simulates correctly in rapid accelerator mode. For limitations of rapid accelerator mode
and Simulink Compiler, see “Rapid Accelerator Limitations”.

Note For information on toolboxes supported by Simulink Compiler, see “Toolboxes Supported
by Simulink Compiler” on page 1-5.

1-3

1 simulink Compiler Getting Started

2 (Creates an application that simulate the model using the sim command, in a script or an App
designer app.

3 Configures the script or the app for deployment by using
simulink.compiler.configureForDeployment function. The
simulink.compiler.configureForDeployment function adapts the model to run in Rapid
Accelerator mode.

Creates a standalone application using the mcc command or the deploytool app.
5 Shares the standalone application.

To use the application, the application user:

1 Installs MATLAB Runtime environment for the deployed application.
2 Uses the deployed application.

The following Simulink functions and classes are deployable:
Functions:

e sim

* start _simulink

Classes:

* Simulink.SimulationInput and its method setVariable
e Simulink.SimulationOutput
* Simulink.SimulationData.Dataset

See Also
Simulink.SimulationInput | deploytool |mcc | sim |
simulink.compiler.configureForDeployment | simulink.compiler.genapp

Related Examples

. “Create and Deploy a Script with Simulink Compiler” on page 1-7

. “Export Simulink Models to Functional Mock-up Units” on page 1-9
. “Toolboxes Supported by Simulink Compiler” on page 1-5

1-4

Toolboxes Supported by Simulink Compiler

Toolboxes Supported by Simulink Compiler

Simulink Compiler supports the following toolboxes:

Aerospace Blockset™.

Audio Toolbox™.

Automated Driving Toolbox™.
AUTOSAR Blockset.
Communications Toolbox™.
Computer Vision Toolbox™.

Control System Toolbox™.

Deep Learning Toolbox™: All blocks created from gensim that support code generation.

DSP System Toolbox™.

Fixed-Point Designer™: Fixed-point data point is supported.

Fuzzy Logic Toolbox™.

Model Predictive Control Toolbox™.

Navigation Toolbox™.

Phased Array System Toolbox™.

Powertrain Blockset™.
Robotics System Toolbox™.
Simscape™.

Simscape Driveline™.
Simscape Electrical™.
Simscape Fluids™.
Simscape Multibody™.
Simulink.

Simulink Control Design™.

™M

Simulink Design Optimization™.

Stateflow®.
Symbolic Math Toolbox™.

System Identification Toolbox™.

Vehicle Dynamics Blockset™.
Vehicle Network Toolbox™.
Vision HDL Toolbox™.

Note Simulink Compiler supports all the blocks that support code generation in these toolboxes.
Among these toolboxes, the prebuilt apps, Uls, and functions, and blocks that don’t support code

generation are not supported by Simulink Compiler.

1-5

1 simulink Compiler Getting Started

See Also

Related Examples

. “Create and Deploy a Script with Simulink Compiler” on page 1-7
. “Export Simulink Models to Functional Mock-up Units” on page 1-9

1-6

Create and Deploy a Script with Simulink Compiler

Create and Deploy a Script with Simulink Compiler

In this section...

“Prepare the Model” on page 1-7
“Write the Script to Deploy” on page 1-7
“Compile Script for Deployment” on page 1-8

“Run the Deployed Script” on page 1-8

In this example, you prepare a model to work with Simulink Compiler, develop and compile the script,
and then deploy it as a standalone application.

Prepare the Model

Simulink Compiler uses rapid accelerator simulation targets to generate an executable to submit a
Simulink model. Simulink Compiler only supports models which can run in rapid accelerator mode. To
set the simulation mode of the model to rapid accelerator, use the model parameter
'SimulationMode' with SimulationInput object. To enable simulation deployment of the model,
your model must be supported by the Rapid Accelerator mode correctly.

Simulink Compiler only supports sim function syntax that takes Simulink.SimulationInput
object and returns Simulink.SimulationOutput object.

If callbacks are present in the model, they are called during the build time of the application.
However, once the application or the script is deployed, these callbacks are not invoked.

Write the Script to Deploy

After preparing the model, write the script that you would like to deploy. In this example, we use a
model and change one of the tunable parameters in the script.

In the MATLAB Editor, create a function deployedScript. In this function, create a
Simulink.SimulationInput object for the model, sldemo suspn_3dof and change the value of
Mb with the setVariable method of the Simulink.SimulationInput object. To ensure that the
model runs in rapid accelerator mode, set the SimulationMode to Rapid through the
setModelParameter method of the Simulink.SimulationInput object or use the
simulink.compiler.configureForDeployment function as shown below.

The variables modified in the simulations can be in the base workspace or in the top model
workspace. If your model uses external input variables, those variables must be in the MATLAB
workspace before packaging for deployment.

function deployedScript()

in = Simulink.SimulationInput('sldemo suspn 3dof');
in = in.setVariable('Mb', 1000);
in = simulink.compiler.configureForDeployment(in);

out = sim(in);
end

Save the function as a deployedScript.m.

1-7

1 simulink Compiler Getting Started

1-8

Compile Script for Deployment

Before compiling the script that you want to deploy, ensure that the files for the model and script, in
this case sldemo_suspn_3dof and the deployedScript.m, are included on the MATLAB search
path. To compile the script, use the mcc command with the script name. To learn more about the mcc
command, see mcc.

mcc -m deployedScript.m
Troubleshooting Tips

Simulink Compiler automatically packages the dependencies in the model and the deployed scripts. If
the command mcc cannot find a dependency, you might see errors.

» Ifyou see the error "Unable to resolve the name Simulink.SimulationInput", check that the
model is on the path.

» If the dependent files are located in another directory, attach them by using the flag -a. For
example, mcc -m scriptName.m -a myDataFile.dat.

Run the Deployed Script
Install MATLAB Runtime

To run the deployed executable, you need an appropriate runtime environment. To install the
MATLAB Runtime, see https://www.mathworks.com/products/compiler/matlab-runtime.html.

Run the Deployed Application

You can run the deployed application only on the platform that the deployed application was
developed on.

Run the deployed application from the Windows command prompt. Running the deployed application
from the command prompt enables the application to print diagnostic messages in the command
prompt when it encounters errors. These messages can be a helpful tool in troubleshooting the
problem.

See Also
Simulink.SimulationInput | configureForDeployment | deploytool | mcc | sim

Related Examples
. “Deploy an App Designer Simulation with Simulink Compiler”
. “Deploy Simulations with Tunable Parameters”

https://www.mathworks.com/products/compiler/matlab-runtime.html

Export Simulink Models to Functional Mock-up Units

Export Simulink Models to Functional Mock-up Units

Export Models

Export Simulink models to Functional Mock-up Unit (FMU) that supports Co-Simulation in FMI
version 2.0. To check that the exported block is still a valid Simulink model, you can also direct the
software to import the FMU back to a Simulink model as part of the export process.

Requirements include:

* Simulink Compiler

* A writable folder into which to place the exported FMU.
Exported models can have:

* Input and output data types: double, int32, boolean, string

* Matrices

* Bus Signals

* Tunable Parameters. Parameter must refer to a global workspace variable.

Standalone FMU

Simulink models can be exported to Standalone Co-Simulation FMU in version 2.0. The generated

FMU package contains following files:

* modelDescription.xml

* model.png (optional)

* binaries\win64\modelname.dll, or binaries\linux64\modelname.so, or binaries
\darwin64\modelname.dylib

You might experience an expected time delay in the exported FMU for Co-Simulation mode.

FMU Variables

FMU modelDescription.xml file contains interfacing variables converted from Simulink model:

* Variables with causality="input’: converted from root Inport block

* Variables with causality="output’: converted from root Outport block

* Variables with causality="parameter’: converted from referenced Runtime Tunable Parameters
* Independent variable ‘time’

To generate FMU input and output, define root Inport and Outport block in Simulink model. Name of
the generated variable is converted from root Inport/Outport block name, by removing special and
blank characters and avoiding duplicates.

The following input/output data types are supported:

* double (Real in FMI)
* int32 (Integer in FMI)
* Dboolean (Boolean in FMI)

1-9

1 simulink Compiler Getting Started

1-10

* string (String in FMI)

If model root Inport or Outport block is a non-virtual bus, individual bus elements will be expanded to
variables using structured naming convention (‘."). If model root Inport or Outport block, individual
scalar elements will be expanded to variables using array naming convention (‘[]’).

To export referenced variables as FMU parameter, you can

* define a variable. Use the variable in a Simulink block with tunable parameter, and make sure
Code Generation > Optimization > Default parameter behavior is set to ‘Tunable’ (or model
parameter ‘InlineParams’ is set to off)

* define a Simulink Parameter object. Use the object in a Simulink block with tunable parameter,
and make sure the Storage Class of the object is ‘ExportedGlobal’.

Name of the generated variable is converted from parameter name, by removing special characters
and avoiding duplicates.

The following parameter data types are supported:

* double (Real in FMI)

* int32 (Integer in FMI)

* boolean or logical (Boolean in FMI)

If referenced parameter is a struct, individual struct members will be expanded to variables using

structured naming convention (‘."). If referenced parameter is array or matrix, individual scalar
elements will be expanded to variables using array naming convention (‘[1’).

FMU Solver

Fixed-step solvers are supported for standalone FMU export. It is recommended to set a fixed
fundamental sample time (Solver > Solver details > Fixed-step size) before exporting the model.
When simulating the Standalone FMU in other environment, communication step-size must be an
integral multiple of the fundamental sample time.

FMU Dynamic Library

Generated FMU contains dynamic library build for the current platform. Default fmi2TypesPlatform
value is used.

All required and optional fmi2 functions defined by FMI standard can be invoked. However, the
following functions have no operation and return fmi2OK immediately:

* Model-Exchange functions

» Functions accessing or serializing FMUstate

* Functions setting or getting input or output derivatives

* Functions querying fmi2DoStep status, or cancelling fmi2DoStep

» Function computing directional derivative of variables

Save Source Code with FMU Export

You can export a Simulink model to FMU along with C source code. You can check Save Source
Code in the Export Model to FMU Co-Simulation window or use the command line API,

Export Simulink Models to Functional Mock-up Units

exportToFMU2CS('md1lName', 'SaveSourceCodeToFMU', 'on') to export the model to FMU with
C source code.

If the Simulink model contains model references with custom datatypes or fixed-point functions,
exporting FMU with source code may error out due to duplicate header files in the sharedutils
folder. Follow instructions on Generate Shared Utility Code to set Code Generation > Interface >

Shared Code Placement parameter to 'Shared Location'and regenerate FMU.
Limitations

You cannot generate FMU from Simulink model, due to these limitations:

* Variable-step solvers are not supported

* Non-zero simulation start time are not supported

* Simulink model that references external resources (data files, mex or m files) are not supported

Export a Simulink Model
Use the Export Dialog Box

Export the vdp example using Simulink toolstrip: Simulation > Save > Export Model
ToStandalone FMU

1 Open the model, vdp

2 In Simulink editor, Simulink toolstrip: Simulation > Save > Standalone FMU.

3 In Simulink editor, select Save> Export Model to> FMU Co-Simulation.

4 In the export dialog box, specify the path to export the FMU.

Export model 'wdp' to co-simulation standalone FMU *

Description

Export model to co-simulation standalone Functional Mock-up Unit (FMU) using Functional Mock-up
Interface (FMI) version 2.0.

Options
Save source code to FMU
Create model after generating standalone FMU [] Generate 32-bit DLL (requires MSVC Compiler)

Add icon: Model snapshot | Image file: Browse
Export to: | | Browss
Create Cancel Help

5 Click Create

Simulink creates the FMU file, mode1lName . fmu and optionally the Simulink
model,modelName_fmu.slx.

1-11

1 simulink Compiler Getting Started

1-12

Use the Programmatic Interface

Export the vdp example to an FMU using the default exportToFMU2CS function. This command
creates the FMU file, modelName.fmu. By default, it also creates a Simulink model,

modelName fmu.slx, that contains an FMU Co-Simulation block with the original model. Create
this model if you want to check the integrity of the exported FMU.

load system('vdp')

set param('vdp', 'SolverType', 'Fixed-step')

exportToFMU2CS('vdp")

Export the vdp example to an FMU using the exportToFMU2CS function, but do not create a
Simulink model. This command creates the FMU file, modelName.fmu.

load_system('vdp"')

set param('vdp', 'SolverType', 'Fixed-step')

exportToFMU2CS('vdp', 'CreateModelAfterGeneratingFMU', 'off")

Export the vdp example to an FMU using the exportToFMU2CS function. Create a model for the
FMU and use an image of the original model as the block icon. This command creates the FMU
file, modelName.fmu, and a Simulink model with an FMU Co-Simulation block whose block icon is
the original model.

exportToFMU2CS('vdp', 'AddIcon', 'snapshot')

See Also
Simulink.SimulationInput | configureForDeployment | deploytool | mcc | sim

Related Examples

“Deploy Simulations with Tunable Parameters”
“Deploy an App Designer Simulation with Simulink Compiler”
“Simulation Callbacks for Deployable Applications”

	Simulink Compiler Getting Started
	Simulink Compiler Workflow Overview
	Toolboxes Supported by Simulink Compiler
	Create and Deploy a Script with Simulink Compiler
	Prepare the Model
	Write the Script to Deploy
	Compile Script for Deployment
	Run the Deployed Script

	Export Simulink Models to Functional Mock-up Units
	Export Models
	Export a Simulink Model

